Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.163
Filtrar
1.
Sci Rep ; 14(1): 8163, 2024 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589435

RESUMEN

Despite several studies conducted to investigate housing factors, the effects of housing construction materials on childhood ARI symptoms in Bangladesh remain unclear. Hence, the study aimed to measure such a correlation among children under the age of five. A hospital-based case-control study was conducted, involving 221 cases and 221 controls from January to April 2023. Bivariate and multivariate binary logistic regression was performed to measure the degree of correlation between housing construction materials and childhood ARI symptoms. Households composed of natural floor materials had 2.7 times (95% confidence interval 1.27-5.57) and households composed of natural roof materials had 1.8 times (95% confidence interval 1.01-3.11) higher adjusted odds of having under-five children with ARI symptoms than household composed of the finished floor and finished roof materials respectively. Households with natural wall type were found protective against ARI symptoms with adjusted indoor air pollution determinants. The study indicates that poor housing construction materials are associated with an increased risk of developing ARI symptoms among under-five children in Bangladesh. National policy regarding replacing poor housing materials with concrete, increasing livelihood opportunities, and behavioral strategies programs encouraging to choice of quality housing construction materials could eliminate a fraction of the ARI burden.


Asunto(s)
Contaminación del Aire Interior , Infecciones del Sistema Respiratorio , Humanos , Niño , Lactante , Vivienda , Estudios de Casos y Controles , Bangladesh/epidemiología , Infecciones del Sistema Respiratorio/epidemiología , Infecciones del Sistema Respiratorio/prevención & control , Infecciones del Sistema Respiratorio/etiología , Materiales de Construcción , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Factores de Riesgo
2.
Environ Monit Assess ; 196(5): 463, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642156

RESUMEN

In this study, the levels of sulfur dioxide (SO2) and nitrogen dioxide (NO2) were measured indoors and outdoors using passive samplers in Tymar village (20 homes), an industrial area, and Haji Wsu (15 homes), a non-industrial region, in the summer and the winter seasons. In comparison to Haji Wsu village, the results showed that Tymar village had higher and more significant mean SO2 and NO2 concentrations indoors and outdoors throughout both the summer and winter seasons. The mean outdoor concentration of SO2 was the highest in summer, while the mean indoor NO2 concentration was the highest in winter in both areas. The ratio of NO2 indoors to outdoors was larger than one throughout the winter at both sites. Additionally, the performance of machine learning (ML) approaches: multiple linear regression (MLR), artificial neural network (ANN), and random forest (RF) were compared in predicting indoor SO2 concentrations in both the industrial and non-industrial areas. Factor analysis (FA) was conducted on different indoor and outdoor meteorological and air quality parameters, and the resulting factors were employed as inputs to train the models. Cross-validation was applied to ensure reliable and robust model evaluation. RF showed the best predictive ability in the prediction of indoor SO2 for the training set (RMSE = 2.108, MAE = 1.780, and R2 = 0.956) and for the unseen test set (RMSE = 4.469, MAE = 3.728, and R2 = 0.779) values compared to other studied models. As a result, it was observed that the RF model could successfully approach the nonlinear relationship between indoor SO2 and input parameters and provide valuable insights to reduce exposure to this harmful pollutant.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Dióxido de Azufre/análisis , Dióxido de Nitrógeno/análisis , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Contaminación del Aire/análisis , Estaciones del Año , Contaminación del Aire Interior/análisis
3.
Environ Sci Technol ; 58(15): 6693-6703, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38577981

RESUMEN

A major component of human skin oil is squalene, a highly unsaturated hydrocarbon that protects the skin from atmospheric oxidants. Skin oil, and thus squalene, is continuously replenished on the skin surface. Squalene is also quickly consumed through reactions with ozone and other oxidants. This study examined the extent of squalene depletion in the skin oils of the forearm of human volunteers after exposure to ozone in a climate chamber. Temperature, relative humidity (RH), skin coverage by clothing, and participants' age were varied in a controlled manner. Concentrations of squalene were determined in skin wipe samples collected before and after ozone exposure. Exposures to ozone resulted in statistically significant decreases in post-exposure squalene concentrations compared to pre-exposure squalene concentrations in the skin wipes when squalene concentrations were normalized by concentrations of co-occurring cholesterol but not by co-occurring pyroglutamic acid (PGA). The rate of squalene loss due to ozonolysis was lower than its replenishment on the skin surface. Within the ranges examined, temperature and RH did not significantly affect the difference between normalized squalene levels in post-samples versus pre-samples. Although not statistically significant, skin coverage and age of the volunteers (three young adults, three seniors, and three teenagers) did appear to impact squalene depletion on the skin surfaces.


Asunto(s)
Contaminación del Aire Interior , Ozono , Humanos , Adolescente , Escualeno/análisis , Ozono/análisis , Contaminación del Aire Interior/análisis , Piel/química , Oxidantes
4.
Ital J Pediatr ; 50(1): 69, 2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38616250

RESUMEN

BACKGROUND: Pollution of the indoor environment represents a concern for human health, mainly in case of prolonged exposure such as in the case of women, children, the elderly, and the chronically ill, who spend most of their time in closed environments. MAIN BODY: The aim of the study is to organize a group of experts in order to evaluate the evidence and discuss the main risk factors concerning indoor air and the impact on human health as well as challenging factors regarding preventive strategies to reduce pollution. The experts highlighted the main risk factors concerning indoor air, including poor ventilation, climatic conditions, chemical substances, and socio-economic status. They discussed the impact on human health in terms of mortality and morbidity, as well as challenging factors regarding preventive strategies to reduce pollution. CONCLUSION: The experts identified strategies that can be reinforced to reduce indoor pollution and prevent negative consequences on human health at national and local levels.


Asunto(s)
Contaminación del Aire Interior , Niño , Anciano , Humanos , Femenino , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/prevención & control , Salud Infantil , Consenso , Factores de Riesgo
5.
Environ Int ; 186: 108641, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38621323

RESUMEN

People generally spend most of their time indoors, making a comprehensive evaluation of air pollution characteristics in various indoor microenvironments of great significance for accurate exposure estimation. In this study, field measurements were conducted in Kunming City, Southwest China, using real-time PM2.5 sensors to characterize indoor PM2.5 in ten different microenvironments including three restaurants, four public places, and three household settings. Results showed that the daily average PM2.5 concentrations in restaurants, public spaces, and households were 78.4 ± 24.3, 20.1 ± 6.6, and 18.0 ± 4.3 µg/m3, respectively. The highest levels of indoor PM2.5 in restaurants were owing to strong internal emissions from cooking activities. Dynamic changes showed that indoor PM2.5 levels increased during business time in restaurants and public places, and cooking time in residential kitchens. Compared with public places, restaurants generally exhibit more rapid increases in indoor PM2.5 due to cooking activities, which can elevate indoor PM2.5 to high levels (5.1 times higher than the baseline) in a short time. Furthermore, indoor PM2.5 in restaurants were dominated by internal emissions, while outdoor penetration contributed mostly to indoor PM2.5 in public places and household settings. Results from this study revealed large variations in indoor PM2.5 in different microenvironments, and suggested site-specific measures for indoor PM2.5 pollution alleviation.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Monitoreo del Ambiente , Material Particulado , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Material Particulado/análisis , China , Contaminantes Atmosféricos/análisis , Humanos , Ciudades , Culinaria , Restaurantes/estadística & datos numéricos , Tamaño de la Partícula
6.
ScientificWorldJournal ; 2024: 1524398, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628597

RESUMEN

The primary energy source in Ethiopia is biomass. Over 80% of Ethiopians are rural dwellers who rely on biomass energy for lighting and cooking. In most parts of Ethiopia, injera is traditionally baked using an open fire, a three stone, or a device using woody biomass. These baking stoves have very low efficiency and consume a significant amount of fuel. Moreover, these traditional baking stoves have released large amounts of indoor air pollution, which has led to different types of health-related risks, especially for women and children in the country. Therefore, the aim of this study was to investigate efficient and fuel-saving injera baking technologies. Rigorously, an injera baking gasifier stove was designed, developed, and characterized in detail through water boiling and control cooking test methods. The indoor air pollution level was evaluated using particulate matter measuring instruments. The result indicated that the developed gasifier stove had a thermal efficiency of 21.8%. Furthermore, an 86% fuel savings performance was demonstrated by the controlled cooking test for the injera baking gasifier stove. The average emission concentrations of particulate matter and carbon monoxide were 608 µg/m3 and 9 ppm, respectively, during indoor air pollution determination. The study showed that injera baking gasifier stoves are a promising cooking technology for societies where baking is mostly dependent on traditional biomass fuel.


Asunto(s)
Contaminación del Aire Interior , Pueblo de África Oriental , Humanos , Contaminación del Aire Interior/análisis , Biomasa , Culinaria/métodos , Etiopía , Material Particulado/análisis
7.
Sci Total Environ ; 927: 172132, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569952

RESUMEN

This study investigated the occurrence and distribution of per- and polyfluoroalkyl substances (PFASs) in house dust samples from six regions across four continents. PFASs were detected in all indoor dust samples, with total median concentrations ranging from 17.3 to 197 ng/g. Among the thirty-one PFAS analytes, eight compounds, including emerging PFASs, exhibited high detection frequencies in house dust from all six locations. The levels of PFASs varied by region, with higher concentrations found in Adelaide (Australia), Tianjin (China), and Carbondale (United States, U.S.). Moreover, PFAS composition profiles also differed among regions. Dust from Australia and the U.S. contained high levels of 6:2 fluorotelomer phosphate ester (6:2 diPAP), while perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were predominant in other regions. Furthermore, our results indicate that socioeconomic factors impact PFAS levels. The assessment of human exposure through dust ingestion and dermal contact indicates that toddlers may experience higher exposure levels than adults. However, the hazard quotients of PFASs for both toddlers and adults were below one, indicating significant health risks are unlikely. Our study highlights the widespread occurrence of PFASs in global indoor dust and the need for continued monitoring and regulation of these chemicals.


Asunto(s)
Contaminación del Aire Interior , Polvo , Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Fluorocarburos , Polvo/análisis , Humanos , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Fluorocarburos/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/análisis , Contaminantes Atmosféricos/análisis , Caprilatos/análisis , Ácidos Alcanesulfónicos/análisis , Australia , China
8.
Sci Total Environ ; 927: 172278, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38583631

RESUMEN

The Wells-Riley model is extensively used for retrospective and prospective modelling of the risk of airborne transmission of infection in indoor spaces. It is also used when examining the efficacy of various removal and deactivation methods for airborne infectious aerosols in the indoor environment, which is crucial when selecting the most effective infection control technologies. The problem is that the large variation in viral load between individuals makes the Wells-Riley model output very sensitive to the input parameters and may yield a flawed prediction of risk. The absolute infection risk estimated with this model can range from nearly 0 % to 100 % depending on the viral load, even when all other factors, such as removal mechanisms and room geometry, remain unchanged. We therefore propose a novel method that removes this sensitivity to viral load. We define a quanta-independent maximum absolute before-after difference in infection risk that is independent of quanta factors like viral load, physical activity, or the dose-response relationships. The input data needed for a non-steady-state calculation are just the removal rates, room volume, and occupancy duration. Under steady-state conditions the approach provides an elegant solution that is only dependent on removal mechanisms before and after applying infection control measures. We applied this method to compare the impact of relative humidity, ventilation rate and its effectiveness, filtering efficiency, and the use of ultraviolet germicidal irradiation on the infection risk. The results demonstrate that the method provides a comprehensive understanding of the impact of infection control strategies on the risk of airborne infection, enabling rational decisions to be made regarding the most effective strategies in a specific context. The proposed method thus provides a practical tool for mitigation of airborne infection risk.


Asunto(s)
Microbiología del Aire , Contaminación del Aire Interior , Humanos , Contaminación del Aire Interior/prevención & control , Aerosoles/análisis , COVID-19/prevención & control , COVID-19/transmisión , Ventilación , Carga Viral , Modelos Teóricos , Control de Infecciones/métodos , Medición de Riesgo
9.
J Radiol Prot ; 44(2)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38632901

RESUMEN

The high radon concentrations measured in the indoor air of groundwater facilities and the prevalence of the problem have been known for several years. Unlike in other workplaces, in groundwater plants, radon is released into the air from the water treatment processes. During the measurements of this study, the average radon concentrations varied from 500 to 8800 Bq m-3. In addition, the indoor air of the treatment plants is filtered and there are no significant internal aerosol sources. However, only a few published studies on groundwater plants have investigated the properties of the radon progeny aerosol, such as the equilibrium factor (F) or the size distribution of the aerosol, which are important for assessing the dose received by workers. Moreover, the International Commission on Radiological Protection has not provided generic aerosol parameter values for dose assessment in groundwater treatment facilities. In this study, radon and radon progeny measurements were carried out at three groundwater plants. The results indicate surprisingly high unattached fractions (fp= 0.27-0.58), suggesting a low aerosol concentration in indoor air. The correspondingFvalues were 0.09-0.42, well below those measured in previous studies. Based on a comparison of the effective dose rate calculations, either the determination of thefpor, with certain limitations, the measurement of radon is recommended. Dose rate calculation based on the potential alpha energy concentration alone proved unreliable.


Asunto(s)
Contaminantes Radiactivos del Aire , Contaminación del Aire Interior , Agua Subterránea , Monitoreo de Radiación , Radón , Humanos , Hijas del Radón/análisis , Contaminantes Radiactivos del Aire/análisis , Radón/análisis , Aerosoles , Monitoreo de Radiación/métodos , Contaminación del Aire Interior/análisis
10.
Chemosphere ; 355: 141866, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565375

RESUMEN

Biochar-based materials for air treatment have gained significant attention for removing health-detrimental volatile organic compounds (VOCs) and particulate matter (PM) in indoor air settings. However, high turnaround time, multiple pretreatment processes involved, and high pore size and low surface area (>10 µm, <100 m2 g-1) of lignocellulosic feedstocks demand alternative biochar feedstock material. Considering this, we designed a simple first-of-its-kind indoor air scrubbing material using diatoms-enriched microalgae biochar. In the present study, the microalgae were cultivated on waste anaerobic digestate (biogas slurry) and were pyrolyzed at three different temperatures: 300 °C (BC300), 500 °C (BC500), and 700 °C (BC700). The BC500 and BC700 showed the highest removal efficiencies (99 %) for total volatile organic carbons (TVOCs) and formaldehyde (HCHO) at concentrations of 1.22 mg m-3 HCHO and 8.57 mg m-3 TVOC compared to 50% efficiency obtained with commercially available surgical, cloth, and N95 masks. The biochar obtained showed a high Brunauer-Emmett-Teller (BET) surface area of 238 m2 g-1 (BC500) and 480 m2 g-1 (BC700) and an average pore size of 9-11 nm due to the mesoporous characteristic of diatom frustules. The comparatively poor performance of BC300 was due to lower surface area (150 m2 g-1) arising from incomplete organic removal, as evidenced by FESEM-EDX and FTIR. The high removal efficiencies in BC500 and BC700 were also attributed to the presence of reactive functional groups such as -OH and R-NH2. Concurrently, the average particulate matter (PM10, PM2.5, and PM1) removal efficiency for BC500 and BC 700 ranged between 66 and 82.69 %. The PM removal performance of BC500 and BC700 was lower (15-20%) than commercially available masks. Overall, the present study highlights the importance of diatoms (reactive Si) present inside the pores of microalgal biochar for enhanced removal of PM, TVOCs, and HCHO at temperatures above 500 °C. This complete approach signifies a step towards establishing a self-sustainable and circular process characterized by minimal waste generation for indoor air treatment.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Carbón Orgánico , Microalgas , Compuestos Orgánicos Volátiles , Material Particulado/análisis , Compuestos Orgánicos Volátiles/análisis , Contaminación del Aire Interior/análisis , Formaldehído , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente
11.
J Hazard Mater ; 470: 134278, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38631247

RESUMEN

Resuspension caused by human walking activities is an important source of indoor bioaerosols and has been associated with health effects such as allergies and asthma. However, it is unknown whether inhalation of resuspended bioaerosols is an important exposure pathway for airborne infection. Also, crucial factors influencing the resuspension of settled microbes have not been quantified. In this study, we experimentally investigated the resuspension of culturable bacteria from human-stepping on polyvinyl chloride (PVC) flooring under different conditions. We determined the bacterial resuspension emission factor (ER), a normalized resuspension parameter for the ratio of resuspended mass in the air to the mass of settled particles, for two common bacteria, Escherichia coli and Salmonella enterica. The investigation involved varying factors such as microbial surface-attached durations (0, 1, 2, and 3 days), the absence or presence of nutrients on flooring surfaces, and changes in relative humidity (RH) (35%, 65%, and 85%). The results showed that, in the absence of nutrients, the highest ER values for E. coli and S. enterica were 3.8 × 10-5 ± 5.2 × 10-6 and 5.3 × 10-5 ± 6.0 × 10-6, respectively, associated with surface-attached duration of 0 days. As the surface-attached duration increased from 0 to 3 days, ER values decreased by 92% and 84% for E. coli and S. enterica, respectively. In addition, we observed that ER values decreased with the increasing RH, which is consistent with particle adhesion theory. This research offers valuable insights into microbial resuspension during human walking activities and holds the potential for assisting in the assessment and estimation of risks related to human exposure to bioaerosols.


Asunto(s)
Escherichia coli , Humedad , Caminata , Humanos , Pisos y Cubiertas de Piso , Salmonella enterica , Aerosoles , Contaminación del Aire Interior , Microbiología del Aire , Cloruro de Polivinilo/química , Nutrientes
12.
J Hazard Mater ; 470: 134159, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38565018

RESUMEN

Household air pollution prevails in rural residences across China, yet a comprehensive nationwide comprehending of pollution levels and the attributable disease burdens remains lacking. This study conducted a systematic review focusing on elucidating the indoor concentrations of prevalent household air pollutants-specifically, PM2.5, PAHs, CO, SO2, and formaldehyde-in rural Chinese households. Subsequently, the premature deaths and economic losses attributable to household air pollution among the rural population of China were quantified through dose-response relationships and the value of statistical life. The findings reveal that rural indoor air pollution levels frequently exceed China's national standards, exhibiting notable spatial disparities. The estimated annual premature mortality attributable to household air pollution in rural China amounts to 966 thousand (95% CI: 714-1226) deaths between 2000 and 2022, representing approximately 22.2% (95% CI: 16.4%-28.1%) of total mortality among rural Chinese residents. Furthermore, the economic toll associated with these premature deaths is estimated at 486 billion CNY (95% CI: 358-616) per annum, constituting 0.92% (95% CI: 0.68%-1.16%) of China's GDP. The findings quantitatively demonstrate the substantial disease burden attributable to household air pollution in rural China, which highlights the pressing imperative for targeted, region-specific interventions to ameliorate this pressing public health concern.


Asunto(s)
Contaminación del Aire Interior , Población Rural , China/epidemiología , Humanos , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Población Rural/estadística & datos numéricos , Costo de Enfermedad , Contaminantes Atmosféricos/análisis , Mortalidad Prematura , Modelos Teóricos , Exposición a Riesgos Ambientales/efectos adversos
13.
Front Public Health ; 12: 1348234, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590814

RESUMEN

China is actively encouraging households to replace traditional solid fuels with clean energy. Based on the Chinese Families Panel Survey (CFPS) data, this paper uses propensity scores matching with the difference-in-differences model to examine the impact of clean energy in the household sector on residents' health status, and whether such an energy transition promotes health equity by favoring relatively disadvantaged social groups. The results show that: (1) The use of cleaner cooking fuels can significantly improve residents' health status; (2) The older adult and women have higher health returns from the clean energy transition, demonstrating that, from the perspective of age and gender, the energy transition contributes to the promotion of health equity; (3) The clean energy transition has a lower or insignificant health impact on residents who cannot easily obtain clean energy or replace non-clean energy at an affordable price. Most of these individuals live in low-income, energy-poor, or rural households. Thus, the energy transition exacerbates health inequalities. This paper suggests that to reduce the cost of using clean energy and help address key issues in health inequality, Chinese government efforts should focus on improving the affordability, accessibility, and reliability of clean energy.


Asunto(s)
Contaminación del Aire Interior , Humanos , Femenino , Anciano , Contaminación del Aire Interior/análisis , Disparidades en el Estado de Salud , Reproducibilidad de los Resultados , China , Inequidades en Salud
14.
Eur Respir Rev ; 33(172)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38657996

RESUMEN

Common airborne allergens (pollen, animal dander and those from fungi and insects) are the main triggers of type I allergic disorder in the respiratory system and are associated with allergic rhinitis, allergic asthma, as well as immunoglobulin E (IgE)-mediated allergic bronchopulmonary aspergillosis. These allergens promote IgE crosslinking, vasodilation, infiltration of inflammatory cells, mucosal barrier dysfunction, extracellular matrix deposition and smooth muscle spasm, which collectively cause remodelling of the airways. Fungus and insect (house dust mite and cockroaches) indoor allergens are particularly rich in proteases. Indeed, more than 40 different types of aeroallergen proteases, which have both IgE-neutralising and tissue-destructive activities, have been documented in the Allergen Nomenclature database. Of all the inhaled protease allergens, 85% are classed as serine protease activities and include trypsin-like, chymotrypsin-like and collagenolytic serine proteases. In this article, we review and compare the allergenicity and proteolytic effect of allergen serine proteases as listed in the Allergen Nomenclature and MEROPS databases and highlight their contribution to allergic sensitisation, disruption of the epithelial barrier and activation of innate immunity in allergic airways disease. The utility of small-molecule inhibitors of allergen serine proteases as a potential treatment strategy for allergic airways disease will also be discussed.


Asunto(s)
Alérgenos , Inmunidad Innata , Serina Proteasas , Humanos , Alérgenos/inmunología , Serina Proteasas/metabolismo , Serina Proteasas/inmunología , Animales , Contaminación del Aire Interior/efectos adversos , Inhibidores de Serina Proteinasa/uso terapéutico , Exposición por Inhalación/efectos adversos , Hipersensibilidad Respiratoria/inmunología , Hipersensibilidad Respiratoria/enzimología
15.
Environ Sci Technol ; 58(11): 5058-5067, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38445590

RESUMEN

In new buildings, nonoccupant VOC emissions are initially high but typically decrease within months. Increased ventilation is commonly used to improve indoor air quality, assuming it speeds up VOC off-gassing from materials. However, previous research presents inconsistent results. This review introduces a simplified analytical model to understand the ventilation-emission relationship. By combining factors such as diffusivity, emitting area, and time, the model suggests the existence of a theoretical ventilation threshold beyond which enhanced ventilation has no further influence on emission rates. A threshold of approximately 0.13 L s-1 m-2 emitting area has been found for various VOCs documented in the existing literature, with which the conflicting results are explained. It is also shown that the threshold remains notably consistent across different boundary conditions and model resolutions, indicating its suitability for real-world applications.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Ventilación , Contaminación del Aire Interior/análisis , Gases , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente
16.
Artículo en Inglés | MEDLINE | ID: mdl-38541284

RESUMEN

Over the past decade, our understanding of the impact of air pollution on short- and long-term population health has advanced considerably, focusing on adverse effects on cardiovascular and respiratory systems. There is, however, increasing evidence that air pollution exposures affect cognitive function, particularly in susceptible groups. Our study seeks to assess and hazard rank the cognitive effects of prevalent indoor and outdoor pollutants through a single-centre investigation on the cognitive functioning of healthy human volunteers aged 50 and above with a familial predisposition to dementia. Participants will all undertake five sequential controlled exposures. The sources of the air pollution exposures are wood smoke, diesel exhaust, cleaning products, and cooking emissions, with clean air serving as the control. Pre- and post-exposure spirometry, nasal lavage, blood sampling, and cognitive assessments will be performed. Repeated testing pre and post exposure to controlled levels of pollutants will allow for the identification of acute changes in functioning as well as the detection of peripheral markers of neuroinflammation and neuronal toxicity. This comprehensive approach enables the identification of the most hazardous components in indoor and outdoor air pollutants and further understanding of the pathways contributing to neurodegenerative diseases. The results of this project have the potential to facilitate greater refinement in policy, emphasizing health-relevant pollutants and providing details to aid mitigation against pollutant-associated health risks.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Humanos , Contaminantes Atmosféricos/análisis , Contaminación del Aire/análisis , Emisiones de Vehículos , Humo , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Material Particulado/análisis , Ensayos Clínicos Controlados Aleatorios como Asunto
17.
Artículo en Inglés | MEDLINE | ID: mdl-38541325

RESUMEN

The objective of the study was to investigate the association between outdoor and indoor air pollution sources and atopic eczema among preschool children in South Africa. A cross-sectional design, following the International Study of Asthma and Allergies in Childhood (ISAAC) Phase III protocol, was applied. The study was conducted in Mabopane and Soshanguve Townships in the City of Tshwane Metropolitan Municipality in Gauteng, South Africa. A total population of 1844 preschool children aged 7 years and below participated in the study; 1840 were included in the final data analysis. Data were analyzed using multilevel logistic regression analysis. The prevalence of eczema ever (EE) and current eczema symptoms (ESs) was 11.9% and 13.3%, respectively. The use of open fires (paraffin, wood, or coal) for cooking and heating increased the likelihood of EE (OR = 1.63; 95% CI: 0.76-3.52) and current ESs (OR = 1.94; 95% CI: 1.00-3.74). Environmental tobacco smoke (ETS) exposure at home increased the likelihood of EE (OR = 1.66; 95% CI: 1.08-2.55) and current ESs (OR = 1.61; 95% CI: 1.07-2.43). Mothers or female guardians smoking cigarettes increased the likelihood of EE (OR = 1.50; 95% CI: 0.86-2.62) and current ESs (OR = 1.23; 95% CI: 0.71-2.13). The use of combined building materials in homes increased the likelihood of EE, and corrugated iron significantly increased the likelihood of current ESs. The frequency of trucks passing near the preschool children's residences on weekdays was found to be associated with EE and current ESs, with a significant association observed when trucks passed the children's residences almost all day on weekdays. Atopic eczema was positively associated with exposure to outdoor and indoor air pollution sources.


Asunto(s)
Contaminación del Aire Interior , Contaminación del Aire , Dermatitis Atópica , Eccema , Contaminación por Humo de Tabaco , Humanos , Preescolar , Femenino , Contaminación del Aire Interior/efectos adversos , Dermatitis Atópica/epidemiología , Dermatitis Atópica/etiología , Sudáfrica/epidemiología , Estudios Transversales , Eccema/epidemiología , Contaminación por Humo de Tabaco/efectos adversos , Contaminación por Humo de Tabaco/análisis , Contaminación del Aire/análisis
18.
Artículo en Inglés | MEDLINE | ID: mdl-38541340

RESUMEN

The endeavor to maintain and enhance the indoor air quality (IAQ) in historical buildings transcends the traditional boundaries of cultural heritage preservation, emerging as a pivotal public health concern [...].


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire Interior/prevención & control , Contaminación del Aire Interior/análisis , Salud Pública , Monitoreo del Ambiente , Contaminantes Atmosféricos/análisis
19.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542255

RESUMEN

The long-term effects of environmental pollution have been of concern as several pollutants are carcinogenic, potentially inducing a variety of cancers, including childhood cancer, which is a leading cause of death around the world and, thus, is a public health issue. The present scoping review aimed to update and summarize the available literature to detect specific environmental pollutants and their association with certain types of childhood cancer. Studies published from 2013 to 2023 regarding environmental pollution and childhood cancer were retrieved from the PubMed database. A total of 174 studies were eligible for this review and were analyzed. Our search strategy brought up most of the articles that evaluated air pollution (29%) and pesticides (28%). Indoor exposure to chemicals (11%), alcohol and tobacco use during pregnancy (16%), electromagnetic fields (12%), and radon (4%) were the subjects of less research. We found a particularly high percentage of positive associations between prenatal and postnatal exposure to indoor (84%) and outdoor (79%) air pollution, as well as to pesticides (82%), and childhood cancer. Positive associations were found between leukemia and pesticides and air pollution (33% and 27%); CNS tumors and neuroblastoma and pesticides (53% and 43%); and Wilms tumor and other rare cancers were found in association with air pollution (50%). Indoor air pollution was mostly reported in studies assessing several types of cancer (26%). Further studies are needed to investigate the mechanisms underlying the potential associations between indoor/outdoor air pollution and pesticide exposure with childhood cancer risk as more preventable measures could be taken.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminación del Aire , Contaminantes Ambientales , Neoplasias , Plaguicidas , Embarazo , Femenino , Humanos , Niño , Neoplasias/epidemiología , Neoplasias/etiología , Contaminantes Atmosféricos/análisis , Contaminación Ambiental , Contaminación del Aire/análisis , Contaminantes Ambientales/toxicidad , Plaguicidas/toxicidad , Exposición a Riesgos Ambientales/efectos adversos
20.
Sci Total Environ ; 924: 171459, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38438041

RESUMEN

The increasing application of nanotechnology has resulted in a growing number of nano-enabled consumer products, and they could be important contributors to indoor particulate matter, with potential adverse health effects. This study investigated the exposure of adults and children to the released and resuspended manufactured particles from seven nano-enabled consumer sprays. Sedimentation and resuspension of released particles were investigated in a newly constructed 2.8 × 1.6 × 2.4 m3 chamber. The resuspension of deposited particles was investigated as a function of product type, flooring material (e.g., carpet and vinyl), resuspension force (e.g., walking by an adult and motion of a robotic sampler that simulated a child), and measurement height. The concentration of released and resuspended particles in the air was determined using Button Aerosol Samplers (SKC Inc.) with 25-mm 2 µm-pore PTFE filters. Samplers were positioned in the experimenter's breathing zone (e.g., 1.5 m for adults and 0.3 m for a child-simulating robot) and at fixed stations of 0.3 m and 1.1 m heights. Resuspended particle mass concentrations ranged from 28 to 905 µg/m3, and the resuspension rates of deposited spray particles for the same variable combinations varied from 10-4 to 10-1 h-1, depending on product type, flooring material, sampling height, and resuspension force. Particle resuspension rates from carpet were up to 320 % higher than resuspension rates from vinyl flooring, resuspension rates measured at 0.3 m were up to 195 % higher than the rates measured with a 1.1 m stationary sampler, and resuspension rates due to a walking adult were up to 243 % higher than resuspension rates caused to a moving robot that simulated a child. Overall, these data on the resuspension of particles from nano-enabled consumer sprays could help us understand the resulting exposures and support future studies on human exposure reduction.


Asunto(s)
Contaminación del Aire Interior , Humanos , Tamaño de la Partícula , Contaminación del Aire Interior/análisis , Material Particulado , Aerosoles/análisis , Pisos y Cubiertas de Piso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...